Back to Research

OSL-ActionSpotting, A unified library for action spotting in sports videos

AI
Sports
CNN

Action spotting is crucial in sports analytics as it enables the precise identification and categorization of pivotal moments in sports matches, providing insights that are essential for performance analysis and tactical decision-making. The fragmentation of existing methodologies, however, impedes the progression of sports analytics, necessitating a unified codebase to support the development and deployment of action spotting for video analysis. In this work, we introduce OSL-ActionSpotting, a Python library that unifies different action spotting algorithms to streamline research and applications in sports video analytics. OSL-ActionSpotting encapsulates various state-of-the-art techniques into a singular, user-friendly framework, offering standardized processes for action spotting and analysis across multiple datasets.

Action spotting transfer.